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1. Abstract

This paper seeks to explore the underlying team statistics that best can predict a team’s likelihood
of reaching the MLB playoffs. The approach is two-fold, providing an “offensive” regression that
regresses wins on offensive statistics and a “defensive” regression that regresses wins on defensive
statistics. Data was collected from the 2008 season until the most recent 2023 season; however, 2020 was
omitted from the data set due to the coronavirus pandemic leading to a shortened season and unique
playoft format. These regressions helped show the significance of specific statistics influencing wins and
the magnitude and direction of these statistics. As we are interested in creating a model that creates a
playoff-caliber team, we then run a Monte-Carlo simulation for an imagined team with specific stats and
show the percentage of that team making the playoffs by reaching a threshold amount of wins.

2. Introduction

The sport of baseball has quickly become a statistically driven and very analytical sport following
the 2002 Oakland Athletics' impressive "Moneyball" playoff run. By utilizing a novel sabermetrics
approach, General Manager Billy Beane was able to construct an incredible team on a limited budget that
ended up beating teams with big-name superstar players as well as very deep pockets. This went on to
revolutionize the sport and create the turbo-charged teams we see in the modern era that are able to
nitpick every part of the game so as to maximize their success. In the spirit of this statistical takeover, we
sought to look at data that tracked teams' average statistics starting from the 2008 season to the most
recent 2023 season and see which statistics were the most important in influencing the record of a team
over this period of time. Utilizing a linear regression model, we were able to figure out exactly this and
see how influential some of these highly publicized statistics really are.

Focusing on making the playoffs was what mattered the most in terms of this report, as we regard
it as the gateway to future successes for the franchise. If a team can specifically tailor its roster to
augment its chances of making the playoffs, this will pay dividends down the road. In addition to various
financial incentives for the teams in terms of ballpark sales and playoff-specific merchandising, as well as
cash bonuses for players, the playoffs signal that the team is ready to compete. Consistently making the
playoffs attracts star players who want to win games, which in turn creates a winning culture and
solidifies the team's place as a competitive and important team in the league. For small market teams
(teams not located in the biggest metropolitan places in the United States), making the playoffs also
brings much-needed cash and media attention to the team but also encourages management to actively
build off success instead of maintaining a degree of mediocrity extensively prevalent in these small
market teams.

The largest challenges when attempting to come to these results was making sure that we could
understand what these statistics were even measuring, as well as making sure it was actually relevant to
predicting wins. In terms of understanding statistics, many of the advanced statistics are actually formulas
using 4 or 5 different statistics to try and create an advanced measure that captures more than a simple
statistic could capture. Take slugging percentage, for example, which is equal to (1B + 2Bx2 + 3Bx3 +
HRx4)/AB, yielding a number that is very hard to contextualize in certain situations. Thus, when
interpreting results and building the actual regression, it was important to carefully make sure the
variables included in regressions were not almost identical to each other. Furthermore, the data set we
downloaded had just about anything that could be measured about a roster, such as the average age of the
pitchers to how many times a team's batters were hit by pitches. While these types of statistics may, of
course, influence wins, they are not necessarily descriptive compared to others. In addition to that,
interpreting the coefficient results for these would not be helpful in trying to construct a playoft-caliber
team. If, for example, we saw that younger teams yielded higher wins, the logical instruction would be to
tell teams to get younger if they wanted to win. However, younger players then influence much else in the
real world that the model is not able to capture.

As previously mentioned, the main instrument used to understand how statistics influence wins
was the linear regression model. After understanding the coefficients of the selected variables, we created
a hypothetical team built with their metrics at a high enough level to hypothetically make the playoffs. By
running a Monte Carlo simulation, we then introduce the variance of these statistics over the course of the
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season to see the probability of the team we put together at the beginning of the season reaching the
winning threshold at the end of the season. Overall, as a team, we were able to learn many skills, such as
how to consolidate large data sets and discern what is important for our specific goals. Furthermore, we
fine-tuned our knowledge of linear regressions and learned how to apply that to our Monte Carlo
simulations.

3. Problem Statement and Data Sources

All the data used in this project is sourced and collected from Sportsreference’s baseball statistics
website “www.baseball-reference.com” This website contains organized tables of data for every possible
statistic tracked in baseball. These tables can be easily extracted and downloaded from the website as
Excel files. For the purpose of this project, the section “Season Team Stats” was utilized to extract the
average statistics for all 30 MLB teams in the last 15 seasons (2008-2023). 2020 was omitted from our
datasets, as the season was truncated from 162 to 50 games and featured an abnormally large yield of
playoff teams as a result of a disrupted and shortened season in light of the COVID-19 pandemic and
government lockdowns. The average offensive and defensive season statistics for each of the 30 teams in
the past 15 years were then combined to create a 450-row master spreadsheet, “Master Stats.csv” (See
Appendix A), that features every recorded offensive team stat, defensive team stat, and win total for each
team in each Major League Baseball season. Additionally, the league average of all 30 teams for each
statistic is calculated in “Master Stats Average.csv” (See Appendix A).

The objective of this project is to find the optimal statistics that can be used in hitting and
pitching (offense and defense) in order to reach the playoffs. Baseball is unlike any other sport in that the
outcome of every play in each game is recorded and can be predicted using statistics. With baseball
having such a statistically driven and measured set of strategies, we can use statistics to optimize the
strengths and weaknesses of a baseball team to allow a team to find where they must improve on their
roster to be on the path to the playoffs and possibly a championship.

4. Methodology
In order to determine how a team can construct their roster to make the playoffs, we had to
determine which variables were significant to a baseball team winning games, how many games a
baseball team needs to win to qualify for a playoff position, and what range these variables must lie
within to reach this win threshold. To accomplish these sub-objectives, we used the following statistical
tools:
e Linear Regression Model in R: determine which offensive and defensive statistics significantly
influence team wins (see section 4a)
e Statistical Mean: determine how many wins the least winning playoff team needs (see section 4b)
e Variable Distribution: determine what value range is necessary for each statistic variable to reach
the win threshold
e Monte Carlo Simulation: evaluate values used to test variables over numerous trials to extract win
amounts
4a. Linear Regression Model
In baseball, there are a multitude of metrics used to measure an individual player’s performance.
A team is an assembly of players, therefore the statistics used to measure these player’s performances can
be averaged to calculate statistics to measure a team’s performance. However, every aspect of a team’s
play on the field, offensive or defensive, is tracked using a statistical metric, making it difficult to
understand which variables should be optimized to maximize a team’s performance on the season itself.
Baseball reference tracks 28 offensive and 35 defensive statistics to measure hitting and pitching
performance, respectively. However, using all of these statistics in a model is unrealistic, as it is difficult
to properly gauge which metric has the most significant influence on season win total. Therefore, we must
figure out the most important variables to use in our model.
In order to find the most important statistics to use in the linear regression model, we first
referenced the ten main team statistics ESPN displays on their MLB team stats homepage (ESPN, MLB


http://www.baseball-reference.com

team stat leaders, 2023 regular season). This allowed us to narrow down the offense and defensive stats to
the five categories each.

Using the five main batting statistics (BA, HR, RBI, H, SB), an offense baseline model (see Appendix B
Model 1) was created; however, this model yielded a low R squared value of .375, and only three of five
variables were seen as significant, so more variables had to be added to the model.

Call:
Im(formula = W.1 ~ BA + HR + RBI + H + SB, data = realdata)

Residuals:
Min 1Q Median 3Q Max
-24.1411 -6.6796 0.5602 6.0668 29.2113

Coefficients:
Estimate Std. Error t value Pr(>1tl)
(Intercept) -8.98107 15.16602 -0.592 @.554029

BA 717.17788 220.73773  3.249 0.001246 ** 02
HR -0.02674 0.02281 -1.172 0.241652 0
RBI 0.11402 0.01457  7.825 3.76e-14 ***

H -0.11899 0.03144 -3.784 0.000175 *** 202
SB 0.01063 0.01580 0.673 0.501438

- 0.4
Signif. codes: @ ‘***> 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘. 0.1 <’ 1

Residual standard error: 9.714 on 444 degrees of freedom
Multiple R-squared: ©.3752, Adjusted R-squared: 0.3682
F-statistic: 53.34 on 5 and 444 DF, p-value: < 2.2e-16

(Left) Baseline 5 offensive statistic model (Right) Highly Correlated Matrix of all relevant offensive statistics

From this baseline model, we were able to add statistical categories that measure different aspects
of a team’s performance until every relevant offensive statistic was included in the model. This expanded
model has a higher R squared value of .4825, but only four of the twenty categories were statistically
significant (see Appendix B Model 2).

To increase the statistical significance of the variables in our model, variables that were highly
correlated (such as OBP, SLG, OPS, TB, SO, LOB) were taken out from the model, thus yielding a more
accurate model with a higher R squared value of .43 (see Appendix B Model 3); however, there were only
ten statistically significant variables of the sixteen modeled.

This led us to create our final model, where all extra bases hit categories (X2B, X3B) were
removed in favor of SLG, which better accounts for how hard the ball is hit (if the ball is hit harder, it will
go farther, and you will have a better chance to score). Furthermore, generalized offensive statistics (RBI,
HBP) and statistics that focused on poor offensive performance (SO, HBP, LOB, SH, SF) without much
offensive incentive were removed as well. Statistics such as SB and CS (caught stealing) remained in the
model, as stealing bases is an integral part of baseball, and the number of bases stolen is not significant
unless we also take into account the number of failed base stealing attempts (see Appendix B Model 4).

In addition to this offensive statistical model, a defensive statistical model was created. This
defensive statistic model was based on the five main pitching statistics (ERA, SV, BB, HR, SO). Although
this model yielded a high R squared value of .59, all of these values were highly correlated, leading us to
create a new model with more defensive statistics (see Appendix B Model 5).

Im(formula = W.1 ~ ERA + SV + BB.1 + HR.1 + SO.1, data = realdata)

ERA
V
B.1

HR.1

S0.1

Residuals:

;
Min 1Q Median 3Q Max ERA 08
-35.214 -5.197 0.084 5.525 21.314
Coefficients:
Estimate Std. Error t value Pr(>Itl) sv 04
(Intercept) 103.284782  7.594853 13.599 < 2e-16 ***

ERA -13.078494 1.600414 -8.172 3.20e-15 *** 02
sV 0.498886 0.062859 7.937 1.7le-14 *** BB.1 ‘ ‘ 0
BB.1 -0.013208 0.008213 -1.608 ©.10850

HR.1 0.056344 0.020877 2.699 0.00722 ** 0.2
S0.1 0.006402 0.003321 1.928 0.05452 . .

—_— HR.1 0.4
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 <’ 1 06
Residual standard error: 7.862 on 444 degrees of freedom S0.1 . 08
Multiple R-squared: 0.5907, Adjusted R-squared: ©.5861

F-statistic: 128.2 on 5 and 444 DF, p-value: < 2.2e-16 Rl

(Left) Baseline 5 Statistic Defensive Model (Right) Highly Correlated Baseline Defensive statistics
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Of these five statistics, walks were not statistically significant, informing us that this model did not
account for a pitcher’s control of the ball when facing a batter. For this reason, we added statistics that
capture a pitcher’s control of the ball, such as IBB, HBP, WP, IP' (see Appendix B Model 6).

In the final defensive statistic model, the number of pitchers was added® and the number of
innings pitched by a pitcher was removed (IP is highly correlated to ERA, which makes sense, as ERA is
a function of IP and Outs). With an R squared value of .608, and seven statistically significant variables
out of ten, this model served as the final defensive model (see Appendix B Model 7).

Finally, we combined the significant offensive and defensive statistics into one linear regression
model, but found that this model was not the best to use, as it overfit our data with a large R squared value
of .835:

Coefficients:

Estimate Std. Error t value Pr(>1tl)
(Intercept) 9.503018 9.686753 0.981 0.327126
BA 544.690881 152.210162 3.579 0.000385 ***

HR 0.092244  0.030110 3.064 0.002324 **
H -0.023143  0.017474 -1.324 0.186049

SB 0.010725 0.010702 1.002 0.316845

cs -0.071900 0.033861 -2.123 0.034290 *
BB 0.032818 0.004848 6.770 4.23e-11 ***
GDP -0.078705 ©0.018552 -4.242 2.71e-05 ***
1BB 0.002529  0.025555 0.099 0.921223
SLG -36.997889 57.904819 -0.639 0.523199
ERA -11.833999  1.135482 -10.422 < 2e-16 ***
N 0.346109  0.042095  8.222 2.36e-15 ***
BB.1 -0.008049 0.005790 -1.390 0.165191
HR.1 -0.004422  0.015075 -0.293 0.769416
S0.1 0.000592 0.002517 0.235 0.814175
1BB.1 -0.076395 0.022754 -3.357 0.000856 ***
wp -0.002607 0.019967 -0.131 0.896168
X.P 0.009577 0.061215 ©.156 0.875750

Signif. codes: @ ‘***’ 0.001 ‘**> 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ > 1
Residual standard error: 5.061 on 432 degrees of freedom
Multiple R-squared: ©.835, Adjusted R-squared: .8285
F-statistic: 128.6 on 17 and 432 DF, p-value: < 2.2e-16

(Above) linear regression model combining final offensive and defensive statistics

4b. Win Threshold Calculation

The win threshold is a simple but important calculation that we utilized as a measure for playoff
berths. Because making the playoffs involves different situations every year, by looking at the win totals
over the years, we can understand, on average, what is needed to guarantee a spot in the playoffs. Using
the win data from the 2012 season onwards, due to a playoff format change that year, we isolate the five
teams that made the playoffs in a given year and then take the number of wins for the team with the
lowest record. This is done because we do not necessarily care how the team makes the playoffs; it is just
that it does make it. By then taking the mean of these lowest winning teams in the American League,
National League, and league in general, we were able to have a win value to use as a benchmark for
entering the playoffs.

4c. Variable Distribution

For each of the chosen variables, which we divided into offensive and defensive stats tables so
that they would be easier to understand by people who are not as familiar with baseball, we calculated the
arithmetic mean and standard deviation. Then, we also computed the coefficient of variation. We did this
because the variables have very different values, and we wanted to make it easier to compare the spread
of distribution between variables. Finally, we created graphs in R to show the variable distribution. In
each graph, we plotted the probability density function, which required scaling the y-axis to density. Each
graph also shows the mean as +1 standard deviation, indicated by a dashed line. We created the

' If a pitcher has good control, he will not need to walk batters intentionally and he will pitch more
innings;
2 Unlike batters, a team can use as many pitchers as they need in a game/season; if more pitchers are used,
the quality and performance of these pitchers is inherently lower
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histograms in order to gather more information, which was useful in conducting the Monte Carlo
Simulation. Specifically, we wanted to see what kind of distributions the variables followed.

4d. Monte Carlo Simulation

The Monte Carlo simulation adds an extra dimension to this project by using the previous linear
regression and predicting how many wins a team would have at the end of the season, given expected
opening-day statistics and league-wide variance in the specific statistic. The rationale here being that
teams are (mainly) constructed throughout the offseason and thus have a roster with average, or expected
statistics for the upcoming season based on their performance the past season. If the team, therefore,
trades for or acquires players that will move a given stat in the desired direction, the team enters the
season with a baseline expectation for their performance (number of wins). However, because sports have
intrinsic variability in them, no player will perform at the exact same level in one season as another. To
account for this, we introduce the variance of that specific stat into the model so that the statistics are able
to fluctuate accordingly, and these new season stats are therefore used to predict the number of wins in the
season..

5. Analysis and Results

5a. Linear Regression Results

In our final offensive model, there are nine variables, all of which are statistically significant,
with an R squared value of .419. Since all of these variables are statistically significant, they all strongly
affect the number of wins a team can earn in a season, therefore they must be considered when we find
out how to build a playoff team. The highest coefficient we see is that of the batting average, which is
logical, as a player must make contact with the ball to score runs. Additionally, we see that Grounded into
a Double play is detrimental to the number of wins a team can get, as getting two out of three possible
batters out in one play ruins all momentum in an inning (of which there are only nine in a game). The
most interesting coefficient, however, is the negative coefficient for Slugging. A baseball fanatic’s
intuition would lead one to believe that hitting the ball a lot and as hard as possible is optimal to get more
wins, however having a power-heavy team leads to shortcomings in speed and contact.

Im(formula = W.1 ~ BA + HR + H + SB + CS + BB + GDP + IBB + SLG,
data = realdata)

Residuals:

Min 1Q Median 3Q Max
-26.0064 -6.0207 -0.3367 5.8521 28.8453
Coefficients:

Estimate Std. Error t value Pr(>Itl)

(Intercept) -5.969e+@1 1.409e+01 -4.235 2.79e-05 ***
BA 1.618e+03 2.719e+02  5.951 5.45e-09 ***
HR 2.750e-01 5.392e-02 5.100 5.05e-07 ***
H -1.279e-01 3.157e-02 -4.052 6.00e-05 ***
SB 4.608e-02 1.900e-02 2.426 0.015678 *
cs -1.959%e-01 5.895e-02 -3.323 0.000964 ***
BB 5.273e-02 8.706e-03 6.057 2.98e-09 ***
GDP -1.183e-01 3.402e-02 -3.477 0.000558 ***
1BB 1.457e-01 4.028e-02 3.618 0.000332 ***
SLG -3.757e+02 1.041e+02 -3.608 0.000344 ***

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 .’ 0.1 * * 1
Residual standard error: 9.409 on 440 degrees of freedom
Multiple R-squared: 0.4191, Adjusted R-squared: 0.4072
F-statistic: 35.27 on 9 and 440 DF, p-value: < 2.2e-16

(Above) Final Linear Regression Model for Offensive Statistics

Therefore, from this linear regression model, it is optimal to build a team that is able to draw
walks, make contact with the ball frequently and steal bases. This team's build warrants a roster of quick
players that have a great eye for the strike zone and a keen ability to hit the ball into play.

In our final defensive model, there are nine variables, seven of which are statistically significant,
with an R squared value of .608, meaning 61% of the variability in the wins can be explained by the
defensive variables in the model. The seven variables that are statistically significant all strongly affect
the number of wins a team can earn in a season, therefore they must be considered when we find out how
to build a playoff team. The highest coefficient we see is that of the ERA, which is logical, as the ERA of
a team determines how effective they are at allowing the opposing team to score. Therefore, a great team
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will have a low ERA, as shown with the large negative coefficient. Furthermore, we see that the largest
coefficients are for intentional walks and number of pitchers. The negative coefficient of intentional walks
supports the intuition, as when a pitcher intentionally walks a player, it is an indication that the pitcher
does not have control of the ball, and cannot properly get the batter out. Additionally, the number of
pitchers has a large magnitude in the negative direction, indicating that a team wants to use as few
pitchers as possible during the season. Quality pitchers will be able to play deeper into games, and pitch
many games during the season as well. For this reason, having too many pitchers play on a team is an
indication of a weak pitching staff, and a bad defensive team. One oddity in this regression’s output is the
extremely low coefficient of strikeouts, which is a miniscule .0079, implying that strikeouts are not as
important for defense to win games.

Therefore, this linear regression model informs us that we must have a pitching staff that is able
to prioritize control (minimizing walks and not hitting batters). If a pitching staff is focusing on control,
they are sacrificing power, thus are unable to get as many strikeouts. The model therefore warrants that a
pitching staff is built for control and longevity, minimizing the number of pitchers needed during the
season, by having pitchers throw slower, putting less stress on their arm and maximizing the number of
outs they obtain’, hence winning more games.

Im(formula = W.1 ~ ERA + SV + BB.1 + HR.1 + SO.1 + IBB.1 + HBP.1 +
WP + X.P, data = realdata)

Residuals:
Min 1Q Median 3Q Max
-33.861 -4.768 0.041 5.092 23.264

Coefficients:
Estimate Std. Error t value Pr(>Itl)
(Intercept) 106.880693 7.713767 13.856 < 2e-16 ***

ERA -12.329008 1.619567 -7.613 1.65e-13 ***
N 0.479416  0.062015 7.731 7.34e-14 ***
BB.1 -0.002017 0.009018 -0.224 0.823122
HR.1 0.043754 0.021333 2.051 0.040857 *
S0.1 0.007891  0.003655 2.159 0.031420 *
IBB.1 -0.115681 0.030460 -3.798 0.000166 ***
HBP.1 0.011848 0.036028 0.329 0.742418

WP -0.035269 0.029428 -1.198 0.231375
X.P -0.231896 0.090738 -2.556 0.010934 *

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 < ’ 1
Residual standard error: 7.727 on 440 degrees of freedom
Multiple R-squared: 0.6083, Adjusted R-squared: ©.6003
F-statistic: 75.92 on 9 and 440 DF, p-value: < 2.2e-16

(Above) Final Linear Regression Model for Defensive Statistics

5b. Win Threshold Results

League Mean_Wins

AL 89.09091
NL §8.00000
MLB 87.36364

By taking the arithmetic mean of the least winning playoff team from 2012 to 2023, we reach
these AL, NL, and MLB results. As we can see, they are all very close to each other, as expected. To
make the playoffs in the AL, one would need 90 wins, the NL 89, and generally speaking, would need 88
wins to make the playoffs. Thus, for future predictions, since we are dealing with a general team, we will
establish 88 as the necessary win threshold.

? To maximize the number of outs obtained by a pitcher is minimize ERA, as ERA is inversely
proportional to the number of innings pitched (low ERA means lots of innings pitched and few runs
allowed)



S5c. Variable Distribution Results
We divided our variables into offensive and defensive stats and calculated the league average,

standard deviation, and the coefficient of variation, measured as a percentage, for each of them.

Offensive Stats BA HR H SB CS BB GDP IBB SLG
League Average 0.251 | 181.273 [ 1379.812 | 88.636 | 31.364 | 504.182 | 119.091 28 0.409
Standard Deviation | 0.012 | 39.599 | 78.267 29.547 | 8.960 63.592 16.239 12.262 | 0.027
Coefficient of 4516 | 21.855 |[5.671 33.379 | 28.555 | 12.611 13.626 43.769 | 6.540
Variation (%)

Out of the offensive statistics, IBB and SB have the highest dispersions around the mean, with the
coefficient of variation equal to 43.769% and 33.379% respectively. This signifies a high variation in the
number of IBB and SB. As shown in our linear regression, IBB is statistically significant (**%*) so its high
variation points towards the fact that there are teams which could improve their performance in this area
and thus their overall results. On the other hand, H and BA have the lowest coefficients of variation,
5.671% and 4.516% respectively, showing that they are concentrated around the mean. There is little
variation in the number of Hits and the Batting Average.

For each of the variables, we created a histogram, as seen in this example for Batting Average:

Frequency
5 10 15 20 25 30 35

0

Batting Average Distribution

—

7

7

K]

\

b

17
B

022 023 024 025 026 027 0.28

Batting Average

From the graphs, we were able to confirm that all the variables follow a normal distribution. This
gave us a better understanding of the variables, as well as provided us with information about the ranges
of each variable, which became useful in the Monte Carlo simulation later on.

We completed the same steps for defensive stats:

Defensive Stats ERA [ SV BB.1 HR.1 SO.1 IBB.1 HBP.1 WP #P (X.P)
League Average 4115 [ 41.182 |[504.182 | 181.273 | 1321 28 60.091 57.909 25.909
Standard Deviation | 0.548 | 7.377 58.675 32.601 132.809 | 12.777 | 12.967 13.267 5.376
Coefficient of 1331 | 17.867 | 11.636 17.993 10.053 45.608 | 21.531 22.961 18.680
Variation (%) 0

In a similar manner to the offensive stats, the IBB is the least concentrated around the mean with
45.608% of coefficient of variation, significantly higher than any other variable. The Strikeout and Base
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on Balls are the two variables which are the most concentrated around the mean, their coefficient of
variation equal 10.053% and 11.636% respectively. This means that there is little variation in the number
of SO and BB between different team performances.

We plotted the histograms for each of the defensive variables:

Home Runs Distribution

Frequency
0.008 0.012

0.004

0.000

100 150 200 250 300

Home Runs

Once again, all the variables followed the normal distribution, which gave us more information
on how to proceed with the Monte Carlo Simulation. The rest of the histograms for other variables can be

found in Appendix D.

5d. Monte Carlo Simulation Results

The results of the Monte Carlo simulation are very helpful in helping us predict a team’s future
wins, given statistical expectations for the team at the beginning of the year. We treat offense and defense
as two separate units, as we have for the rest of this project, and as is normal in most baseball analyses.
All of these simulations that follow were run for 500 iterations.

This first simulation is run using the offensive and defensive models with league averages and
league standard deviations as inputs for every relevant statistic as found in the linear regression models.
We do this to ensure that our model is able to create a distribution centered close to the league average in

wins, 80.63, in both cases.

Distribution of Simulated Wins (Offense) Distribution of Simulated Wins (Defense)

120
J

100 120
1
100

Frequency
60
Frequency
60
1

40
|
40

I T T 1
T T T
0 50 100 150 ‘ ‘ ‘
60 70 80 9% 100 110

The histogram on the left shows the distribution of the 500 offensive iterations with a mean of
81.20 wins, very close to the actual league average of 80.63 wins, validating this approach as a way to
predict wins. The same result stands for the histogram on the right, showing the distribution of the 500
defensive iterations with a mean of 82.3 wins. This number is still very close to the mean of 80.63, and
we, therefore, now proceed to create a team that can make the playoffs by reaching a mean value of 88

wins.
We now move on to constructing a team that can reach the 88-win threshold as described earlier.

Theoretically speaking, there are infinite ways to approach this problem; one could move variables in
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every direction and influence the mean number of wins every single time. However, for the sake of
brevity, we will provide one Monte Carlo simulation using each model that reaches the winning threshold.

Distribution of Simulated Wins (Offense)

150
]

100
1

Frequency

50

0 50 100 150

Wins

This distribution is formulated using a hypothetical offense that is average in all statistics;
however, its batting average is now .256, and it has 191 home runs. The .256 BA comes from the fact that
it is very hard to raise the batting average of a team over the course of one off-season. Thus, a one
standard deviation shift would be hard to rationalize. However, a .005 increase, which is about 40% of
one standard deviation, is much more manageable. Furthermore, increasing home runs to 191 is still less
than one standard deviation from the mean and represents hitting ten more home runs than the league
average as a team. This feat is very doable by adding players known for their home run abilities. After
running this Monte Carlo simulation, we reached a mean of 91.7 wins on the year, signaling that we can
expect this team to make the playoffs.

Distribution of Simulated Wins (Defense)

Freguency
B 80 100 120
| | 1 | ]

40

20
1

0
L

T T T T 1
70 80 90 100 110

Wins

This distribution comes about for a hypothetical defense that is average everywhere except in
ERA, SV, BB.1, and WP. The reason this requires much more manipulation than the offensive simulation
arises from the fact that the defensive stats are much tighter in distribution (see 5c or Appendix D). ERA
was lowered to 3.85, a fairly decent decrease from the mean but not yet one standard deviation from the
mean. Lowering this ERA could be done by acquiring a very good starting pitcher with a low ERA,
relievers who do not let up many earned runs, or fielders who consistently make good defensive plays.
Thus, any combination of these three will lead the team in the right direction of lowering their ERA.
Saves are increased to 46, almost one standard deviation above the mean, which requires that relief
pitchers and, specifically, closers are able to hold onto leads. This increase can be attained by signing a
very good closer that will close the game out with the lead intact. BB.1 or walks is decreased to 485,
nearly a third of a standard deviation from the mean, and is a very reasonable decrease to make if the team
is already focusing on acquiring pitchers with control based on the other factors. Finally, wild pitches are
decreased to 50, around half a standard deviation from the mean, and by the same logic as walks, wild
pitches will naturally decrease by improving the control qualities of the pitching staff. Using these
statistics results in an average number of 89.02 wins, above the 88-win threshold, and into the playofts.
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6. Conclusions
The aim of our project was to analyze baseball offensive and defensive statistics in order to make

recommendations for the teams to optimize their roster in the offseason to make the postseason. Based on
the significance of various variables, we wanted to be able to advise teams on how to maximize their
chance of reaching the playoffs. Using statistical tools such as linear regressions and Monte Carlo
simulation, we found that when it comes to offensive statistics, Batting Average (BA) and Ground into
Double Play (GDP) have statistically the highest influence on the number of wins by a team. Out of the
variables related to defense, we showed that Earned Run Average (ERA), Intentional Base on Balls (IBB),
and the Number of Pitchers (X.P) are the most important to a team’s performance. Surprisingly, Slugging
(SLG) and Strikeouts (SO) turned out not to be as important as we initially expected them to be.

These results could be used as a guide for baseball teams on what to focus on in order to increase
their chances of advancing to the playoffs. The offensive results yielded from this experiment inform us
that a team can bolster their roster with quick, contact-focused players to increase their batting average
and number of stolen bases and decrease the number of double plays invoked. On the defensive side, our
experiment showed that in addition to increasing the team’s ERA, it is important to improve control when
pitching, as wild pitches, intentional walks, and other metrics of unruly pitching dampen a team’s ability
to get more wins.

For future work, we can run more linear regression models that instead consider the relationship
between fielding statistics and wins. However, current fielding metrics are not as accurate and consistent
as hitting and pitching statistics. In addition, given more time and more statisticians, this experiment can
be run on a larger set of data, as baseball statistics have been tracked for almost a hundred years. We can
also create a more fine-grained approach to this analysis by considering the statistics for each position on
offense and defense, such as having a designated table for shortstops, closing pitchers, and starting
pitchers. Finally, additional information could be gained by conducting a more in-depth analysis of the
performance of each team in comparison with the others. In our project, we focused on the averages for
the whole league, so calculating them for each team across the years could provide additional insight. It
would make it easier to compare our findings with the actual performance of each team over the years.

11



7. Appendices
Appendix A: CSV File Guides

Guide to Master_Stats.csv:

Green: Offensive Statistics

Red: Defensive Statistics

NOTE: in R, to reference a defensive statistic that have same column name as an offensive statistic use "stat.1"

Year Tm #Bat vee IBB LOB #P PAge LOB.1 Ww.1
2008 Arizona 411 ... 49 1142 20 294 | ... 1109 82
Diamondbacks
2008 | Atlanta Braves 49 ... 56 1274 28 286 ... 1144 72
2023 | Washington 48| ... 6 1082 28 28| ... 1167 71
Nationals

Guide to Master Average Stats.csv:

- Offensive Stats
Red/Orange: Defensive Stats

Yellow: League Average Wins
- Relevant Seasons averaged in last row (only want seasons with current playoff format of 2 wild card teams)

Year Tm #Bat | ... | IBB LOB #P PAge .. | SO/W LOB w
2008 | League Average 431 ... 44 1166 22 28.6( ... 2.01 1166 80
2009 | League Average 42| ... 39 1161 22 284 ... 2.02 1161 81
2010 | League Average 42| ... 41 1144 21 284 ... 2.17 1144 81
2011 | League Average 431 ... 41 1128 22 28.3 2.3 1128 80

League Average 431 ... 35 1103 22 28.4 . 2.48 1103 81

League Average 49| ... 16 1099 29 289 ... 2.65 1099 81

46.09 | ... 28| 1099.090
0909 91

12



Appendix B: Linear Regression Models and Correlation Plots

Offensive Statistic Models:

Model

Linear Regression Model (dependent on

Correlation Between Variables

Number

season wins)

Model 1
(Baseline)

Base 5 ESPN Statistics: BA, HR, RBI, H, SB
Call:

BA

m
2]

p-value: < 2.2e-16

o [wa)
1m(formula = W.1 ~ BA + HR + RBI + H + SB, data = realdata) - © - i
Residuals: AR . . 08
Min 1Q Median 3Q Max 08
-24.1411 -6.6796 ©0.5602 6.0668 29.2113
RBI 04
Coefficients: 02
Estimate Std. Error t value Pr(>Itl) ’
(Intercept) -8.98107 15.16602 -0.592 0.554029 H . 0
BA 717.17788 220.73773  3.249 0.001246 **
HR -0.02674 0.02281 -1.172 0.241652 02
RBI 0.11402 0.01457  7.825 3.76e-14 *** SB 04
H -0.11899 0.03144 -3.784 0.000175 ***
SB 0.01063 0.01580 ©.673 0.501438 0.6
- BA 0.8
Signif. codes: @ ‘***’ .001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 < ’ 1
Residual standard error: 9.714 on 444 degrees of freedom
Multiple R-squared: 0.3752, Adjusted R-squared: 0.3682
F-statistic: 53.34 on 5 and 444 DF, p-value: < 2.2e-16
Model 2 | Add all variables
Coefficients: (1 not defined because of singularities)
Estimate Std. Error t value Pr(>Itl)
(Intercept) 2.771e+01 4.119e+01 0.673 0.501445 1
BA 1.624e403 1.257e+03  1.292 0.196971
HR 3.990e-01 4.546e-01 0.878 0.380514 08
RBI 2.996e-02 3.389e-02  0.884 0.377158
H -1.092¢-01 8.684e-02 -1.257 0.209430
B 2.570e-02 1.886e-02 1.363 0.173697 06
Xx28 7.195e-02 1.516e-01 0.475 0.635266
X38 5.100e-02 3.121e-01 0.163 0.870267 04
s -1.943¢-01 7.339e-02 -2.648 0.008400 **
8B 5.466e-02 1.188e-01  0.460 0.645581 02
S0 -1.140e-02 4.659e-03 -2.448 0.014778 * ’
08P 2.451e402 1.229e+03  0.199 0.842047
SLG -7.112402 1.171e+03 -0.607 0.543953 0
ops -5.027e+01 8.937e+02 -0.056 0.955166
B NA NA NA NA -0.2
3 -1.578e-01 4.718e-02 -3.345 0.000893 ***
HBP 8.134e-02 1.220e-01 0.667 0.505336 -0.4
SH -6.666e-02 3.387e-02 -1.968 0.049723 *
SF 1.025e-01 8.500e-02 1.206 0.228405
188 2.571e-01 4.837e-02 5.316 1.71e-07 *** -0.6
LoB -6.608e-02 3.309e-02 -1.997 0.046485 *
e 08
Signif. codes: O ***’ 0.001 “** 0.01 *’ 0.05 ‘.’ 0.1  ’ 1 188 o O
LOB o @ LX) 0 4
Residual standard error: 8.983 on 430 degrees of freedom
Multiple R-squared: ©.4825,  Adjusted R-squared: ©.4597
F-statistic: 21.1 on 19 and 430 DF, p-value: < 2.2e-16
Model 3 Remove Highly Correlated Variables (OBP, SLG, OPS, TB) _ . oo 0
Coefficients: %%I%%QQ@%%%%%I{B%B
Estimate Std. Error t value Pr(>1tl) -
(Intercept) 31.336293 23.559292 1.330 0.184184 HR @ ® 1
BA 653.180418 242.374275  2.695 0.007314 **
HR -0.014816  0.027392 -0.541 0.588856 RBI @ 0.8
RBI 0.031823  0.033684  0.945 0.345308 H )
H -0.039950  0.046726 -0.855 0.393037 SB 0.6
B 0.024759  0.018768  1.319 0.187811
X28 -0.063668 0.023701 -2.686 0.007502 ** BA Ll R
X38 -0.228566  0.058861 -3.883 0.000119 *** X2B ’
s -0.186886  0.072513 -2.577 0.010288 *
BB 0.073512  0.031856  2.308 0.021489 * X3B 0.2
S0 -0.011283  0.004643 -2.430 0.015492 * CS
GOP -0.156476  0.046970 -3.331 0.000938 *** BB ® 0
HBP 0.097757  0.045693  2.139 0.032961 *
SH -0.067455  ©0.033539 -2.011 0.044917 * SO 0.2
SF 0.092927  0.065511 1.418 0.156764 GDP
188 0.255629  0.048143  5.310 1.76e-07 *** HBP 0.4
LoB -0.063563  0.032868 -1.934 0.053777 . SH ® o
Signif. codes: @ ‘*** 0.001 ‘**’ 0.01 ‘** 0.05 ‘.’ 0.1 * * 1 SF . 06
Residual standard error: 8.962 on 433 degrees of freedom IBB . .. 0.8
Multiple R-squared: 0.4814,  Adjusted R-squared: 0.4622 LOB o |® o Y )
F-statistic: 25.12 on 16 and 433 DF, -1

13




Model 4
(FINAL)

Remove Extra Base Hits (X2B, X3B, RBI),
Remove SH, SE, LOB, SO, HBP
Add SLG

e o
Im(formula = W.1 ~ BA + HR + H + SB + CS + BB + GDP + IBB + SLG, e m < Y m O I %
data = realdata) r T w o O m O w = 1
Residuals: HR . . 0.8
Min 1Q Median 3Q Max
-26.0064 -6.0207 -@.3367 5.8521 28.8453 H . . 06
Coefficients: SB . . 0.4
Estimate Std. Error t value Pr(>I1tl)
(Intercept) -5.969e+01 1.409e+01 -4.235 2.79e-@5 *** BA . . . 0.2
BA 1.618e+03 2.719e+02 5.951 5.45e-09 *** ’
HR 2.750e-01 5.392e-02 5.100 5.05e-07 *** cs o . o
H -1.279e-01 3.157e-02 -4.052 6.00e-05 ***
SB 4.608e-02 1.900e-02 2.426 0.015678 * BB 0.2
cs -1.95%¢-01 5.895e-02 -3.323 0.000964 ***
BB 5.273e-02 8.706e-03  6.057 2.98e-09 *** GDP 0.4
GDP -1.183e-01 3.402e-02 -3.477 0.000558 ***
IBB 1.457e-01 4.028e-02 3.618 0.000332 *** 0.6
SLG -3.757e+02 1.041e+02 -3.608 0.000344 *** SLG . O @ .
- 0.8
Signif. codes: @ ***’ 0.001 ‘**’ .01 ‘*’ 0.05 ‘.’ @.1 < ’ 1 IBB .
-1
Residual standard error: 9.409 on 440 degrees of freedom
Multiple R-squared: 0.4191, Adjusted R-squared: 0.4072
F-statistic: 35.27 on 9 and 440 DF, p-value: < 2.2e-16
Defensive Statistic Models:
Model | Linear Regression Model (dependent on | Correlation Between Variables
Number |season wins)
Model 5 | Base 5 ESPN Statistics: ERA, SV, BB, HR, SO
(Baseline) - - -
o > m o O
w »n o] T 1%
ImCformula = W.1 ~ ERA + SV + BB.1 + HR.1 + S0.1, data = realdata) 1
Residuals: ERA ‘ 0.8
Min 1Q Median 3Q Max
-35.214 -5.197 0.084 5.525 21.314 0.6
Coefficients: SV 0.4
Estimate Std. Error t value Pr(>I1tl)
(Intercept) 103.284782  7.594853 13.599 < 2e-16 *** 0.2
ERA -13.078494 1.600414 -8.172 3.20e-15 ***
SV 0.498886 0.062859  7.937 1.71e-14 *** BB.1 0
BB.1 -0.013208 ©.008213 -1.608 0.10850
HR.1 0.056344 0.020877 2.699 0.00722 ** 0.2
S0.1 0.006402 0.003321 1.928 0.05452 .
- HR.1 0.4
Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ¢ ’ 1
-0.6
Residual standard error: 7.862 on 444 degrees of freedom
Multiple R-squared: 0.5907, Adjusted R-squared: 0.5861 SO.1 -0.8

F-statistic: 128.2 on 5 and 444 DF, p-value: < 2.2e-16
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Model 6

Model 7
(FINAL)

Add statistics for ball control (IP, HBP.1, WP)

ImCformula = W.1 ~ ERA + SV + BB.1 + HR.1 + SO.1 + IBB.1 + IP +

HBP.1 + WP, data = realdata)
Residuals:

Min 1Q Median 3Q Max
-32.686 -4.671 -0.025 5.378 21.626
Coefficients:

Estimate Std. Error t value Pr(>1tl)

(Intercept) -39.274158 44.013053 -0.892 0.372704
ERA -11.393291 1.656289 -6.879 2.08e-11 ***
N 0.461630 0.062122 7.431 5.66e-13 ***
BB.1 -0.001838 0.00897 -0.205 0.837666
HR.1 0.032015 ©0.021153 1.513 0.130881
S0.1 0.005681 0.003494 1.626 0.104635
IBB.1 -0.127228 0.030680 -4.147 4.04e-05 ***
Ip ©0.099053 0.029187 3.394 0.000752 ***
HBP.1 -0.002682 0.034607 -0.078 0.938252
wp -0.041348  0.029335 -1.409 0.159400

Signif. codes: @ ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ¢ ’ 1

Residual standard error: 7.684 on 440 degrees of freedom

Multiple R-squared: 0.6126, Adjusted R-squared: ©.6047
F-statistic: 77.31 on 9 and 440 DF, p-value: < 2.2e-16

Remove Highly Correlated Variables (IP), Add X.P

Im(formula = W.1 ~ ERA + SV + BB.1 + HR.1 + SO.1 + IBB.1 + HBP.1 +

WP + X.P, data = realdata)
Residuals:

Min 1Q Median 3Q Max
-33.861 -4.768 0.041 5.092 23.264
Coefficients:

Estimate Std. Error t value Pr(>Itl)

(Intercept) 106.880693 7.713767 13.856 < 2e-16 ***
ERA -12.329008 1.619567 -7.613 1.65e-13 ***
N 0.479416  0.062015 7.731 7.34e-14 ***
BB.1 -0.002017 0.009018 -0.224 0.823122
HR.1 0.043754 0.021333 2.051 0.040857 *
S0.1 0.007891 0.003655 2.159 0.031420 *
IBB.1 -0.115681 0.030460 -3.798 0.000166 ***
HBP.1 0.011848 0.036028 ©0.329 0.742418
wp -0.035269 0.029428 -1.198 0.231375
X.P -0.231896 0.090738 -2.556 0.010934 *
Signif. codes: @ ‘***’ 9.001 ‘**’ 0.01 ‘*’ 0.05 ‘.” 0.1 ‘> 1

Residual standard error: 7.727 on 440 degrees of freedom
Multiple R-squared: ©.6083, Adjusted R-squared: 0.6003
F-statistic: 75.92 on 9 and 440 DF, p-value: < 2.2e-16

Appendix C: R Scripts
Linear Regression Model:

rm(list=1s())
library(dplyr)
library(corrplot)

data <- read.csv("Master_Stats.csv")

N UAWN P

#omit irrelevant stats, such as batter age, plate appears
realdata <- select(data, -X.Bat, -G,PAge, -L, -W.L., -G.1, -GS, -GF, -CG,

-tSho, -cSho, -BK, -BatAge, -R,
-AB, -PA, -PAge,)

colnames(realdata)

koffense: start at 5 stats
Im(W.
Im(W.
Im(W.
Tm(W.
Im(W.
Im(W.
m(W.
Im(W.
Im(W.
Im(W.
Im(W.
m(W.
Im(W.
Im(W.
Im(W.

base
b_2B
b_3B
b_CS
b_BB
b_SO
b_0BP
b_SLG
b_0PS
b_TB
b_GDP
b_HBP

and iterate to see different models

S0.1
1BB.1
HBP.1
wP

P

1BB.1

HBP.1

WP

0.
1BB.1
HBP.1
wpP
XP

IBB.1

1BP.1

WP

X.P

1~ BA + HR + RBI + H + SB, data=realdata)

1~ BA + HR + RBI + H + SB + X2B, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + (S, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS + TB, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS + TB + GDP, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS + TB + GDP + HBP, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS + TB + GDP + HBP + SH, data=realdata)

1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS + TB + GDP + HBP + SH + SF, data=realdata)
1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS + TB + GDP + HBP + SH + SF + IBB, data=realdata)
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29 b_LOB <- 1m6W.1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + OBP + SLG + OPS + TB + GDP + HBP + SH + SF + IBB'+ LOB, datazreﬁldata)
30 b_remove <- Im(W.1~ BA + HR + RBI + H + SB + X2B + X3B + CS + BB + SO + GDP + HBP + SH + SF + IBB + LOB, data=realdata)
31

32 base_d <- Im(W.1 ~ ERA + SV + BB.1 + HR.1 + S0.1, data= realdata)

B8

34 #load most important Offensive stats into a model

35 offense <- Im(W.1 ~ BA + HR + H + SB + CS + BB + GDP + IBB + SLG, data = realdata)

36

37 #load most important Defensive stats into a model

38 defense <- Im(W.1 ~ ERA + SV + BB.1 + HR.1 + SO.1 + IBB.1 + IP + HBP.1l+ WP, data=realdata)

39

40 #try combining both stats (led to overfit data)

41 combined <- Im(W.1 ~ BA + HR + H + SB + CS + BB + GDP + IBB + SLG + ERA + SV + BB.1 + HR.1 + SO.1 + IBB.1 + WP + X.P, data=realdata)
42 summary(offense)

43  summary(defense)

44  summary(combined)

45

46 #check correlation between offensive variables

47 stats_o<-c("HR", "H", "SB", "BA", "CS", "BB", "GDP", "SLG", "IBB")

48

49 #check correlation between defensive variables

50 stats_d<- c("ERA", "SV", "BB.1", "HR.1", "SO0.1", "IBB.1", "IP", "HBP.1", "WP")

51

52 correlation_matrix <- cor(realdatal, stats_o])

53 corrplot(cor(realdatal, stats_o]))

54 print(correlation_matrix)

55

56 correlation_matrix <- cor(realdatal[, stats_d])

57 corrplot(cor(realdatal, stats_d]))

58 print(correlation_matrix)

Win Thresholds:

132 # win thresholds

133 AL <- data.frame(wins = c(87, 86, 92, 96, 91, 85, 89, 86, 88, 92, 88))
134 mean_ALwins <- mean(ALSwins)

135 NL <- data.frame(wins = c(84, 87, 88, 89, 90, 87, 87, 90, 88, 90, 88))
136 mean_NLwins <- mean(NL$wins)

137 MLB <- data.frame(wins = c(84, 86, 88, 89, 90, 85, 87, 86, 88, 90, 88))
138 mean_MLBwins <- mean(MLBSwins)

139

140 # Creating a table

141 wins_table <- data.frame(

142 League = c("AL"™, "NL", "MLB"),

143 Mean_wins = c(mean_ALwins, mean_NLwins, mean_MLBwins)

144 )

145

146 # Vview the table

147 print(wins_table)

Probability Distribution Histograms:

64 #histograms|

65 hist(data$HR, probability = TRUE, xlab = "Home Runs", ylab = "Frequency", main = "Home Run Distribution™)
66 lines(density(data$HR), col = '[GFEeen]', lwd = 3)

67 abline(v = mean(data$HR), 1ty = 2)

68 abline(v = mean(data$HR)+sd(data$HR), 1ty =2)

69 abline(v = mean(data$HR)-sd(data$HR), 1ty =2)

Monte Carlo Simulation:

1 rm(Tist=1s())

2 Tibrary(dplyr)

3 Tibrary(corrplot)

4 data <- read.csv('Master_Stats.csv")
5

6

7

8

#load most important Offensive stats into a model
offense <- Tm(W.1 ~ BA + HR + H + SB + CS + BB + GDP + IBB + SLG, data = data)

9 #load most important Defensive stats into a model
10 defense <- Tm(w.1 ~ ERA + SV + BB.1 + HR.1 + SO.1 + IBB.1l + WP + X.P, data=data)

12 #summaries for understanding
13  summary(offense)
14 summary(defense)

16 #creating Monte carlo offense
17 - monte_carlo_regression_off <- function(num_simulations, offense, specific_values, variances) {

18 # Extract coefficients from the original model

19 original_coefficients <- coef(offense)

20

21 # Initialize a matrix to store simulation results

22 simulation_results <- matrix(NA, nrow = num_simulations, ncol = length(original_coefficients))
23

24 # Monte Carlo simulations

25+ for (i in 1l:num_simulations) {

26 #Introducing variation in the input variables

27 simulated_data <- data.frame(

28 BA = rnorm(l, mean = specific_values$BA, sd = variances$BA),
29 HR = rnorm(l, mean = specific_values$HR, sd = variancesS$HR),
30 H = rnorm(1, mean = specific_values$H, sd = variancesS$H),

31 SB rnorm(l, mean specific_values$sB, sd variancesS$sB),

32 cs rnorm(l, mean specific_valuess$cs, sd = variances$cs),
33 BB rnorm(l, mean specific_values$BB, sd = variances$BB),
34 GDP = rnorm(l, mean = specific_values$GDP, sd = variances$GDP),



35 IBB = rnorm(l, mean = sbec'if'ic_va'lues&IBB, sd = variances$IBB),

36 SLG = rnorm(l, mean = specific_values$SLG, sd = variances$SLG)

37 )

38

39 # Predict using the original coefficients and simulated data above

40 simulated_offense <- predict(offense, newdata = simulated_data)

41

42 # Store results

43 simulation_results[i, 1 <- coef(Im(simulated_offense ~ BA + HR + H + SB + CS
44 + BB + GDP + IBB + SLG, data = simulated_data))
45~ }

46

47 colnames(simulation_results) <- names(original_coefficients)

48 return(simulation_results)

49« }

50

51 # set specific values for each variable of interest
52 specific_values <- 1ist(BA = 0.256, HR = 191, H = 1379, SB = 88, CS = 31, BB = 504,
53 GDP = 119, IBB = 28, SLG = 0.409)

55 # set standard deviations (variances) for each variable
56 variances <- 1ist(BA = 0.012, HR = 39.599, H = 78.267, SB = 29.547, CS = 8.96,
57 BB = 63.592, GDP = 16.239, IBB = 12.262, SLG = 0.027)

59 # Run Monte Carlo simulation with specific values and variations

60 num_simulations <- 500

61 results <- monte_carlo_regression_off(num_simulations, offense, specific_values, variances)
62 # Extract the 'Intercept' column from the 'results’' matrix- Wins

63 intercept_column <- results[, "(Intercept)"]

65 # calculate the mean of the 'Intercept' column- Mean Wins
66 mean_intercept <- mean(intercept_column)

67

68 # Plotting a histogram of simulated intercepts for offense

69 hist(intercept_column, main = "Di i ion of Simulated wins (offense)", xlab = "wins", ylab = "Frequency",
70 col = "[TightbTuel", border

71 abline(v = mean_intercept, col Iwd = 2) # Add a red vertical line for the mean to distinguish

73 #creating Monte carlo defense

74

75~ monte_carlo_regression_def <- function(num_simulations, defense, specific_values, variances) {
76 # Extract coefficients from the original model

77 original_coefficientsd <- coef(defense)

78

79 # Initialize a matrix to store simulation results

80 simulation_resultsd <- matrix(NA, nrow = num_simulations, ncol = length(original_coefficientsd))
81

82 #Monte Carlo simulations

83~ for (i in Ll:num_simulations) {

84 #Introducing variation in the input variables

85 simulated_data <- data.frame(

86 ERA = rnorm(1l, mean = specific_values$ERA, sd = variances$SERA),

87 SV = rnorm(l, mean = specific_values$sv, sd = variances$sv),

88 BB.1l = rnorm(l, mean specific_values$BB.1, sd = variances$BB.1),

89 HR.1 = rnorm(l, mean specific_values$SHR.1, sd variancesSHR.1),

90 S0.1 = rnorm(1l, mean = specific_values$so.1l, sd = variances$so.1),

91 IBB.1 = rnorm(l, mean = specific_values$IBB.1l, sd = variances$IBB.1),
92 WP = rnorm(l, mean = specific_values$wP, sd = variances$wp),

93 X.P = rnorm(l, mean = specific_values$X.P, sd = variances$X.P)

94 )

95

96 # Predict using the original coefficients and simulated data

97 simulated_defense <- predict(defense, newdata = simulated_data)

98

99 # store results

100 simulation_resultsd[i, ] <- coef(Im(simulated_defense ~ ERA + SV + BB.1l +
101 HR.1 + SO.1 + IBB.1l + WP + X.P, data = simulated_data))
102~ }

103

104 colnames (simulation_resultsd) <- names(original_coefficientsd)
105 return(simulation_resultsd)

106 ~ }

107

108 # set specific values for each variable of interest

109 specific_values <- 1ist(ERA = 3.85, SV = 46, BB.1l = 485, HR.1 = 181.273,

110 s0.1 = 1321, IBB.1 = 28, WP = 50, X.P = 25.909)

111

112 # sSet standard deviations (variances) for each variable

113 varijances <- Tist(ERA = 0.548, SV = 7.377, BB.1 = 58.675, HR.1 = 32.601, SO.1 = 132.809,
114 IBB.1 = 12.777, WP = 13.267, X.P = 5.376)

115

116 # Run Monte Carlo simulation with specific values and variations

117 num_simulations <- 500

118 results <- monte_carlo_regression_def(num_simulations, defense, specific_values, variances)
119

120 # Extract the 'Intercept’ column from the 'results’' matrix- Wins

121 intercept_column <- results[, "(Intercept)"]

122 # calculate the mean of the 'Intercept’' column- Mean wins

123 mean_intercept <- mean(intercept_column)

124

125

126 # Plotting a histogram of simulated intercepts for the 'defense' model

127 hist(intercept_column, main = "Distribution of Simulated wins (Defense)", xlab =
128 "Wins", ylab = "Frequency", col = "[lightblue', border = "white|")

129 abline(v = mean_intercept, col = "[@X", Twd = 2) # Add a red vertical Tine for the mean
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Slugging Percentage

Intentional Base on Balls

: Histograms

Appendix D

Batting Average Distribution

Ground Into Double Play
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Glossary of Statistical Abbreviations:

Offensive Statistics:

Defensive Statistics:

#Bat -- Number of Players used in Games
BatAge -- Batters’ average age
Weighted by AB + Games Played
R/G -- Runs Scored Per Game
G -- Games Played or Pitched
PA -- Plate Appearances
AB -- At Bats
R -- Runs Scored/Allowed
H -- Hits/Hits Allowed
HR -- Home Runs Hit/Allowed
RBI -- Runs Batted In
SB -- Stolen Bases
CS -- Caught Stealing
BB -- Bases on Balls/Walks
SO -- Strikeouts
BA -- Hits/At Bats
OBP -- (H + BB + HBP)/(At Bats + BB + HBP +
SF)
SLG -- Total Bases/At Bats or
(1B +2*2B + 3*3B + 4*HR)/AB

OPS -- On-Base + Slugging Percentages
OPS+ -- OPS+ 100*[OBP/Ig OBP + SLG/Ig SLG -
1]

Adjusted to the player’s ballpark(s)
TB -- Total Bases
Singles + 2 x Doubles + 3 x Triples + 4 x Home
Runs.
GDP -- Double Plays Grounded Into
Only includes standard 6-4-3, 4-3, etc. double plays.
HBP -- Times Hit by a Pitch.
SH -- Sacrifice Hits (Sacrifice Bunts)
SF -- Sacrifice Flies
First tracked in 1954.
IBB -- Intentional Bases on Balls
First tracked in 1955.
LOB -- Runners Left On Base

#P -- Number of Pitchers used in Games
PAge -- Pitchers’ average age
Weighted by 3*GS + G + SV
RA/G -- Runs Allowed Per Game
W -- Wins
L -- Losses
W-L% -- Win-Loss Percentage W / (W + L)
ERA --9 * ER/IP
G -- Games Played or Pitched
GS -- Games Started
GF -- Games Finished
CG -- Complete Game
tSho -- Shutouts by a team
No runs allowed in a game by one or more pitchers.
cSho -- Shutouts
No runs allowed and a complete game.
SV -- Saves
IP -- Innings Pitched
H -- Hits/Hits Allowed
R -- Runs Scored/Allowed
ER -- Earned Runs Allowed
HR -- Home Runs Hit/Allowed
BB -- Bases on Balls/Walks
IBB -- Intentional Bases on Balls
SO -- Strikeouts
HBP -- Times Hit by a Pitch.
BK -- Balks
WP -- Wild Pitches
BF -- Batters Faced
ERA+ -- ERA+ 100*[IgERA/ERA]
Adjusted to the player’s ballpark(s).
FIP -- Fielding Independent Pitching
this stat measures a pitcher's effectiveness at
preventing HR, BB, HBP and causing SO
(13*HR + 3*(BB+HBP) - 2*SO)/IP + Constant,,
WHIP -- (BB + H)/IP
H9--9xH/IP
HR9 --9x HR/IP
BBY9 --9x BB/ IP
SO09 --9xSO /1P
SO/W -- SO/W or SO/BB
LOB -- Runners Left On Base
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